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A numerical solution for the electromagnetic scattering
by a two-dimensional inhomogeneity

K. H. Lee* and H. F. Morrison}

ABSTRACT

A numerical solution for electromagnetic scattering
from a two-dimensional earth model of arbitrary con-
ductivity distribution has been developed and compared
with analog model results. A frequency-domain vari-
ational integral is Fourier transformed in the strike di-
rection, and a solution is obtained using the finite-
element method for each of a finite number of harmon-
ics or wavenumbers in transform space. The solution is
obtained in terms of the secondary electric fields. Prin-
cipally due to the inaccuracy associated with numerical
derivatives of electric fields, the secondary magnetic
field is computed by integrating over the scattering cur-
rents in harmonic space and is then inverse Fourier
transformed.

INTRODUCTION

An important class of electromagnetic (EM) methods used in
exploration geophysics is that which uses sources of finite di-
mension such as current loops or grounded wires. Used mainly
for detection of discrete conductors such as massive sulfide ore
deposits, a wide variety of both time- and frequency-domain
ground and airborne dipole systems have been discussed
(Ward, 1980). Interpretation of the data from surveys using
these systems has generally relied on theoretical solutions,
using either simple models in free space or scale-model results,
again often in free space. For many exploration problems,
especially in areas with host rocks of high resistivity, the free-
space models have been effective for interpretation. When
greater depth of exploration is required, through conductive
surface layers or in conductive host rock, a much more accurate
interpretation is required. Such interpretations must account
for the shielding effects of the surroundings, and for the current
gathering, or channeling effects of the conductive target on the
induced currents in the host rock or overburden.

Considerable insight into some of these problems has been
gained with a series of model studies using a finite, thin, rec-
tangular plate either in free space (Annan, 1974), under a con-

ductive overburden (Lajoie and West, 1976), or more recently,
in a conductive host and under a surface layer (Weidelt, 1981;
Hanneson, 1981).

Another model which has met with some success in the
three-dimensional (3-D) finite conductor, usually a rectangular
block, in a conductive host and with a surface layer. Such
solutions by Hohmann (1975), Weidelt (1975), Meyer (1977),
Pridmore (1978), and Lee et al. (1981) are useful for simple,
confined conductors at frequencics for which the dimensions of
the body are on the order of the skin depth. For complex
shapes or for higher frequencies the computing costs become
prohibitive even on the largest computers.

Geologic models in which the electrical parameters are in-
variant in the strike direction also constitute an important class
of targets in EM exploration. They are particularly appropriate
for dipole methods because the ficlds fall off so rapidly from the
source that an elongated target may be satisfactorily repre-
sented by a two-dimensional (2-D) equivalent. Such a repre-
sentation is often not valid for line sources or for plane-wave
inducing fields.

A detailed discussion of the finite-element method using the
variational principle was given by Coggon (1971), and subse-
quently a finite-element formulation for the case of a dipole
source over a 2-D conductivity distribution was offered by Ryu
(1971). Since magnetic fields are continuous in a region without
magnetic susceptibility contrasts, the problem was formulated
initially in terms of unknown magnetic fields. The equations
were Fourier transformed in the strike direction y, and solu-
tions for a 2-D model were obtained as a function of wavenum-
ber in the strike direction. Inverse transformations then yield
the solution in x, y, and z. There are numerical difficulties with
this approach caused by rapid changes of the gradients of the
magnetic field near the earth-air interface. Lee (1978) reformu-
lated the problem in terms of electric fields and succeeded in
obtaining solutions for some simple models. Stoyer and Green-
field (1976) published a finite-dilference solution using a cou-
pled transmission sheets analogy.

The accuracy of these numerical solutions has been in doubt
because there was nothing to which they could be compared. In
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the present study we have analyzed the numerical solutions at
length, tested a variety of algorithms, and most importantly,
compared the numerical results to scale-model results. For the
range of frequencies and parameters for which the solution is
valid, the resulting program has been useful in analyzing a
number of important exploration problems.

FORMULATION OF THE VARIATIONAL INTEGRAL

Using Maxwell’s equations,

B
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and the constitutive relations and Ohm’s law, i.e.,
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Stratton (1941) showed that
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where n is a unit vector outward normal to the surface S
enclosing v (Figure 1). Integrating the right-hand side of equa-
tion (6) in time and adding the source energy due to a current
source J,, we can write the total EM energy I, contained in v as,
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The variational integral is written in terms of E and a time
dependence ¢ is used. The propagation constant is given by

k = (0?pe — joop)/2.

The stationary principle (Morse and Feshbach, 1953) imposed
on the variational integral [equation (7)] results in the follow-

ing vector wave-cquation for the-electric field E:
k*E — V x V x E = joul,, (8)

thus confirming the correct E field behavior in v.
The presence of a finite source J, a grounded electric dipole,
or a loop of wire of finite radius often creates numerical prob-
lems simply because it is difficult to integrate. This can be easily

avoided by using the principle of superposition to write E in
terms of a primary part E” and a secondary part ES, i.e.,

E-E +E, ©)

and substituting into the variational integral I(E). Then,
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Taking the variation of the right-hand side of equation (10)
with respect to E°, we find
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where Ak? is the square of the propagation constant of the
actual medium subtracted from the square of the propagation
constant k, of the background medium for which the primary
field E? is computed. The first term on the right-hand side of
equation (11) vanishes since the integral is independent of E°.
Applying the vector identity,

V-AxB=B:-VxA-A-VxB,

and the divergence theorem, the second term becomes
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The volume integral is identically zero since the integrand is
always zero. Assuming that the secondary electric field is pre-
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F1G. 1. A general geophysical EM system.
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scribed on S, the surface integral also vanishes. Hence the
effective variational integral for the secondary field is

kl
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20
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The current source J, has been removed from the integral. As a

result, it can be shown that the variation of I(E°), with a proper
boundary condition satisfied, leads to the wave equation

K’ES —V x V x ES = —Ak’E". (13)

One can derive the same equation directly from Maxwell’s
equations by initially decomposing the fields into the primary
and secondary parts.

HARMONIC VARIATIONAL INTEGRAL

If the medium of interest is two-dimensional, we can reduce
the variational integral [equation (12)] to a 2-D problem in
harmonic space using a Fourier transformation. To begin, we
chose a magnetic dipole source oriented in the direction per-
pendicular to the strike. With reference to Figure 1, it is as-
sumed that the strike is parallel to the y-axis. Using the Fourier
integral and appropriate symmetry conditions, we can write
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and
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where P and Q represent field components which are symmetric
and asymmetric in y, respectively. Instead of directly substitut-
ing these Fourier integrals into the variational integral, we may
first approximate them by
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where n; = n(i/L),i=0, 1, ..., N, and it is assumed that field
quantities are periodic in y with a period of 2L. Upon substitut-
ing equations (15) into the variational integral and carrying out
integration along y from — L to L, we find

N
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where after dropping (x, 1;, z),
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and I,(E$) is the zero harmonic variational integral in which
the electric field is polarized only in the direction parallel to the
strike.

FORMULATION OF THE FINITE-ELEMENT EQUATION

The 2-D model cross-section is simulated by a rectangular
mesh. The unknown electric fields are then sequentially as-
signed to each node. Using a bilinear basis function, the electric
field within a rectangular element is written in terms of yet-to-
be-determined electric fields at four corner nodes. Thus, each
scalar component of the electric fields is given by

4
E*= Y NE}, (18)
ji=1
where N, is a shape function (Zienkiewicz, 1977) and Ej is the
unknown electric field at the jth node of the element. Substitut-
ing equation (18) into the variational integral and performing
integrations over the region covered by the mesh, we obtain the
following approximation to the ith harmonic variational inte-
gral:

I,(E) = $EKE* + E“K, E, (19)

where K is the total system matrix for E°, and K, is the source
matrix. Following the variational principle, the condition for
which the variational integral becomes stationary, we find from
equation (19) that

KE* +S =0, (20)

where the vector S represents K, E?. With the secondary electric
field prescribed at the boundary of the 2-D model cross-section,
equation (20) may be partitioned into

Ki Ko |[E]_TS:
P EEH! e

where the subscript i indicates that the variable attached to it is
defined inside the boundary and the subscript b is for variables
on the boundary. The boundary of the 2-D cross-section is
placed far from the lateral inhomogeneity. Therefore it is as-
sumed that the secondary field at the boundary is zero. Then
the harmonic secondary electric field may be obtained by solv-
ing the upper portion of the partitioned matrix equation (21)
ie.,

K E? = —KibE; + Si' (22)

The solution to equation (22) implicitly assumes that the
secondary electric field is continuous everywhere. However,
since the current must be continuous, the electric field normal
to an internal boundary between elements of different conduc-
tivities is discontinuous. Consider an arbitrary boundary separ-
ating elements of different conductivities o, and &,. Then, by
Ohm’s law and the principle of superposition, the normal com-
ponent of currents satisfies

J(EY + EY) = §,(E5 + E3), (23)

where ¥y, = o; + jog;. Hence, the normal component of the
secondary electric fields at one side of the boundary can be
explicitly written in terms of the other side, i.e.,

E = (¥ E? - E‘;) + 2 B (24)
Y2 Ya
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This relation can be easily implemented in the finite-element
equations. Suppose that E} is chosen to represent the normal
componerit of electric fields at a particular inhomogeneous
node. Then when we formulate the electric field within the
element of conductivity o,, the normal component of electric
field E5 may be replaced by the right-hand gide of equation (24).
As a result, the solution to the finite-element equations contains
E:.

NUMERICAL RESULTS

The 2-D earth is simulated by a mesh consisting of finite
rectangular elements of varying conductivity. The size of the
mesh is of primary importance, because it dictates the accuracy
of the numerical solution. Due to the limitations of the af-
fordable computer, a mesh size of 55 x 18 nodes, Figure 2, has
been used for all the models presented here. The mesh generates
the system matrix K of order 2 970 with half-bandwidth of 60.
A symmetric triangular decomposition technique (Reid, 1972) is
used to solve the system matrix for the secondary electric field.
In this technique one ignores sparsity within the bandwidth
and performs no interchanges.

In order to calculate magnetic fields in harmonic (k,) space,
we first employ the simplest technique in which the necessary
derivatives of electric fields are numerically obtained and sub-
stituted into V x E. The next step is to inverse transform these
secondary harmonic fields using the Fourier integrals given by
equation (14). The harmonic field is interpolated by a number
of piece-wise quadratic functions in wavenumber space. Then
the Fourier integral may be approximated by
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F1G. 2. A finite-element grid and notations used for the descrip-
tion of a rectangle.

Ox, y, 2) = 'JTE y J uiQ(x. k,, z) sin k,y dk,,  (25b)
i Jéi

where £; = Ny, Uy = Naivp, Withm = 0.

The number of piece-wise integrations has been typically 7,
which requires 15 harmonic solutions.

To test the numerical technique, we computed results for a
simple model used in scale-model studies of an airborne pro-
specting system at the University of California, Berkeley. The
scale model, Figure 3, represents a vertical slab 12 m wide, 60 m
high, and approximately 1.0 km_in strike. The slab was 2.63
Q-m, and it was placed in a half-space of 100 Q-m. The
response was obtained for a coaxial helicopter boom system in
which the transmitter and receiver were separated by 12 m and
the boom was flown over the target at a height of 20 m from the
surface of the half-space, in a direction perpendicular to the
strike. The results for the real and imaginary responses at 32 Hz
in parts per million (ppm) are shown in the curves in Figure 3.
The agreement between the scale model and numerical results
is good for the quadrature response; the peak of the anomaly is
about 15 percent below the analog result. It is quite possible
that the measured resistivity of the model could be in error by
10 percent, and therefore it could be partially responsible for
the difference.

The real response, however, is erratic and differs from the
tank model result completely. The problem lies in the compu-
tation of the magnetic field for which the numerical derivatives
(differences) of the electric fields were used. To illustrate the
numerical difficulty, we have computed magnetic fields analyti-
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F1G. 3. Numerical model result with the use of numerical de-
rivative. The abscissa represents the location of the array center
with respect to the center of the body. The ordinates are in
parts per million (ppm) to the free space field.
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1

Table 1. Display of harmonic fields in a rectangle for £, = 0.0005m™".

{(1.910x10°8 - 3.7411078)
(-7.668x10°8)

Ey= (191821078 - | 3.744x1078)
€, = (-78451079)

x: 18 xs 24
zv-10 2210

Hy= (-4.855:10°5-
j25.8611078)

-]
=22
=5

x=I8 %24
220 =0

(1980108~ 3.796x108)
(-8.3390078)

(1970%10°8-) 3.791x1078)
(-8.058x1078)

cally over a simple half-space and comparisons are made to
those numerically obtained.

The electric fields in transformed, harmonic, space over a
half-space can be calculated analytically (Lee, 1978) at the four
corners of a hypothetical finite-element rectangle. The magnetic
field may be computed numerically from V x E at the center of
the rectangle. This can be compared with the true magnetic
field computed analytically at the same point.

For this example we selected the same half-space (100 Q- m)
in which the conductive vertical slab was modeled. A horizon-
tal magnetic dipole of moment unity is located at x =0, 20 m
above the surface. Using the same frequency of 32 Hz, we
calculated the secondary electric fields at four corner nodes of a
rectangle in the air. For a wavenumber of k, = 0.0005 m !
these fields are shown schematically in Table 1. Notice that H,
is analytically obtained and displayed at the center of the
rectangle. With the assumption that the electric field would
behave linearly within the rectangle, one can numerically com-
pute the secondary magnetic field H, as

j 0E,
H, = L [jksz - _(‘3_}_:|
op | oz

= (—4.851 — j25.88) x 107 ® A/m.

The numerical result is remarkably close to the one analytically
computed. However, as the wavenumber increases, this agree-
ment disappears. At k, = 0.0625 m™’, the field diagram be-
comes that given as Table 2.

At this frequency the real part of the H, is negligible as is
shown at the center of the rectangle (Table 2). By taking the
numerical derivatives of the electric fields, the horizontal com-
ponent of the magnetic fields is readily obtained as H, = (1.566

x 107¢ — j5.101 x 107 %) A/m. There is virtually no imagi-
nary part for E_; therefore, the imaginary part of the numerical
H, comes from the vertical derivative of the real part of the
electric field E, . For k, > | k|, the field behaves as e %° where
p is the distance on the x-z plane. Over a vertical distance of 10
m the electric field amplitude would decrease by approximately
50 percent (=¢~%%2%) away from the surface of the earth.
Consequently, the numerical derivative of the electric field itself
generates considerable amount of error. In our example the
imaginary part of the numerically computed H, is about 20
percent larger than the analytically obtained one. The real part
of the H, comes from the difference between the cross-

Table 2. Display of harmonic fields in a rectangle for k, = 0.0625 m~ L

(1.459x10712 - 1.656x107)
(-1650x107)

Ey * (3.734x1072-) 2009x107)
E,* (-2/34x10"7)

Hys 2rTeue3-
j4.308x107'0)
®

9.731x10712 -j 3.036x107)
(-2.841x10°7)

(6.636x10712 -} 3.870x107)
(-3.985x10°T)

derivatives of electric fields £, and E,. With a 20 percent
numerical error associated with each of the derivatives, the
error contained in the difference would be cumulative. As a
result the enhanced error itself would become the real part of
the numerical solution because the true solution has negligible
real part when the harmonic number (k) is large.

Although this illustration uses the field from a uniform haif-
space, similar numerical errors would be expected for numeri-
cal derivatives, and their differences, of the scattered electric
field from an inhomogeneity. One of the immediate conse-
quences of the analysis is shown in Figure 3. Unfortunately, the
problem is fundamental since computationally it is not practi-
cal to decrease the element dimensions to increase the accuracy
of the derivative at large k, values.

One way of minimizing this type of numerical error is to
obtain the magnetic field from an integral over the currents in
the half-space rather than from the derivatives at a point.
Assuming that the lateral inhomogeneity is of finite extent, the
secondary magnetic field may be obtained by

H¥(x, k,, z) = f GY(x, x', k,, 2, 2)

x J(x', ky, 2') dx’ dz' (26)

where G™ is the dyadic Green’s function for the magnetic field
in transform space (y—k,; Lee, 1978) and the “scattering
current” J* is given by (Harrington, 1961)

J* = AcE.

The scattering current is nonzero only at places where the
conductivity of the inhomogeneity o, is different from the back-
ground conductivity o,

Ac =0, - 0y.

Using the integral (26) for the magnetic field computation,
two important internal checks have been made for the numeri-
cal solution. Figures 4a and 4b show the convergence test and a
check for the reciprocity principle, respectively, over the model
discussed earlier. The convergence test was made by varying
the number of cells used for the vertical slab in the finite
element solution. Except for the slight oscillation near the
center of the profile, the numerical solutions converge to the
analog result. The number of cells used for the test were 4, 8,
and 18, and the frequency was 32 Hz.
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The reciprocity check was carried out by comparing the
secondary magnetic fields H] and HS, due to magnetic dipole
sources M, and M_, respectively, in their reciprocal positions
over the same model and frequency. For both the real and
imaginary parts of the solution the magnetic field, HS due to the
dipole source M, shows slightly larger peak anomalies; never-
theless, the overall reciprocity check is reasonably good.

The analog results for the tank model were obtained at
frequencies of 32 and 263 Hz. These results are shown in Figure
5 along with the corresponding numerical solutions. The results
at 32 Hz, especially for the quadrature part, are almost identical
and there is a small difference of a few parts per million in the
real part. The result at 263 Hz shows excellent agreement for
the real part. The quadrature part of the numerical solution,
however, shows the peak anomaly about 15 percent less than
that of the analog result. The good result for the real part at this
frequency is an encouraging sign for the numerical code devel-
oped here because as the frequency increases further, the real
part of the solution will dominate over the quadrature part.

CONCLUSION

The computer program requires 5.2 megabytes (MB) of
memory on the CDC 7600 computer and takes approximately
4 minutes for the finite-element part and 5 minutes for the
integration of Green's functions to obtain magnetic fields. The
same program requires only 2.8 MB of memory on the IBM
3081 due to the smaller word size (32 bit), but the computation
time increases by a factor of 2. Typical computing costs are
$65.00 on the CDC 7600 and $41.00 on the IBM 3081. The
machine precision of the IBM 3081 is 6 to 7 digits, but no
significant difference has been observed in the result when
compared to the one obtained from the CDC 7600, whose
precision is 13 to 14 digits.

Although the flexibility of the finite-element method for rep-
resenting arbitrary conductivity distributions is lost when using
the integral approach, the algorithm still provides ways of
analyzing and understanding some of the geophysical prob-
lems. The program developed for the study can be more useful
with additional sources of finite extent, such as a grounded
zslectric dipole or a large loop, if implemented. If the integral
over scattering currents in the entire half-space were used, the
computing costs would become prohibitive because of the time-
consuming operation of the Green’s function integrations. If
only quadrature response is required, it appears that satisfac-
tory results can be obtained for half-spaces of arbitrary conduc-
tivity distribution using the numerical curl operation, especially
if the calculation point is above the interface. If the complete
response is required, the conductivity inhomogeneity must be
confined to some reasonably compact subvolume of the finite-
zlement mesh to keep the computation within bounds.

Even in the latter case, the conductivity inhomogeneity
cannot be too close to the field computation point. For exam-
ole, the program cannot be used for computation of fields on
‘he surface if the inhomogeneity is close to the surface near the
somputation point.
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